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Abstract
We investigate the possible existence of nonradiating motions of systems of
point charges, according to classical electrodynamics with retarded potentials.
We prove that two point particles of arbitrary electric charges cannot move
for an infinitely long time within a finite region of space without radiating
electromagnetic energy. We show however with an example that nonradiating
accelerated motions of systems of point charges do in general exist.

PACS numbers: 03.50.De, 41.60.−m

1. Introduction

It has already been proved a long time (see [1–4] and in the references given in [2] to the
previous works of Herglotz, Sommerfeld, Hertz and Schott) that there exist nontrivial motions
of extended electric charge distributions which do not radiate energy according to the classical
theory of electromagnetism. Some of these motions refer to rigid charged bodies, and were
originally associated with classical extended models of elementary particles. In more recent
times nonradiating sources have gained renewed popularity in connection with the study of the
inverse problem in wave equations; namely, the problem of reconstructing a source when the
radiation emitted or scattered by it is known (see, for instance, [5–7] and references therein).

Most of the existing literature in this field deals with spatially extended sources with a
monochromatic dependence on time. In the present paper we will instead look for nonradiating
systems made of point charges, with no a priori restriction on their possible motion. Hence our
mathematical approach to the problem of nonradiating sources will be completely different,
and in some sense complementary to that usually followed. From a fundamental point of view,
an obvious motivation for our study comes from the fact that, according to present-day standard
theories of microscopic physics (with the exception of string theory), all elementary electric
charges in nature are actually point-like. Therefore, in these theories, continuous charge
distributions can only serve as useful approximations for the description of macroscopic
bodies.

The results of the present investigation may be relevant in connection with the search for
classical models of atomic systems. A classical atom is in fact usually described as an isolated
system of moving point charges (nucleus and electrons). Since the absence of radiation is a
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necessary condition for the stability of the atomic ground state, the formulation of a classical
atomic model can only be possible provided that nonradiating motions of point charges indeed
exist, and that they are compatible with suitable dynamical laws taking into account radiation
reaction (one may adopt for instance the classical third-order Lorentz–Dirac equation [8, 9], or
its approximated version of second order with respect to time [10, 11]). There is a widespread
belief that all solutions of these dynamical equations do actually radiate, and that classical
physics therefore cannot account for the stability of atomic systems. Nevertheless, attempts
to describe atomic physics by making only use of the laws of classical electrodynamics
have still recently been undertaken [12]. Moreover, nonradiating motions have been found
in the dipole approximation for infinite regular arrays (with arbitrary lattice parameter) of
point-like charged oscillators obeying to the Lorentz–Dirac equation with retarded mutual
electromagnetic interactions [13, 14]. It would therefore be interesting, in our opinion, to
establish in which cases the impossibility of nonradiating motions of a finite number of point
charges can indeed be proved with rigorous mathematical arguments.

In this work, we shall not be directly concerned with the dynamical equations which
determine the motion of the particles when the field acting on them is known. Our aim will be
simply to study the restrictions which are imposed on any arbitrary motion of point charges
by the condition of vanishing radiation. This radiation will be calculated by making use of the
usual retarded electromagnetic potentials which arise from Maxwell equations with point-like
sources. Particles moving with constant velocities of course do not radiate electromagnetic
energy, and their distance from any fixed point in space increases to infinity whenever their
velocities are not zero. For the case of one or two particles with arbitrary charges, we will
prove that there do not exist nonradiating motions which are bounded in space for all times.
However, we will find that a pair of point particles of equal charges do not radiate while they
move on a straight line in opposite directions, with their spatial coordinates varying as the
square root of time. This is an indication of the fact that accelerated nonradiating motions
of systems of point charges do in general exist. The search for other nontrivial examples
involving a number of particles greater than two could be an interesting matter for further
investigation.

2. The condition of vanishing radiation

Let us formulate our problem in more precise mathematical terms. We shall consider smooth
motions of N point particles, with nonvanishing electric charges q1, . . . , qN of arbitrary
magnitudes and signs. We denote by the three-dimensional vector zi (t) the position of
particle i at time t, with respect to a fixed Cartesian coordinate system. We suppose that the
motion of these charges is confined within a finite region of space. This means that there exists
a fixed length L > 0 such that

|zi (t)| < L for all t and all i = 1, . . . , N. (1)

The condition of no radiation is expressed as the requirement that the flux of the Poynting vector
generated by the charges, calculated through any large spherical surface of radius R � L,
vanishes at all times. Apart from the conditions just mentioned, the motions considered will
be a priori of the most general possible type.

The retarded electric field generated at spacetime point (x, t) by point particle i is [15]

Ei (x, t) = qi

Ri(1 − ni · vi )2

[
−v̇i +

(
ni · v̇i +

1 − v2
i

Ri

)
ni − vi

1 − ni · vi

]
. (2)
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Here Ri = |x − zi (ti)| and ni = [x − zi (ti)]/Ri (so that |ni | = 1), where ti is the retarded time
of particle i, which is defined as an implicit function of (x, t) by the equation

t − ti = |x − zi (ti)|. (3)

In (2) we also put vi = vi (ti) = dzi (ti)/dti and v̇i = v̇i (ti) = dvi (ti)/dti . The magnetic field
can then be expressed as

Bi (x, t) = ni × Ei (x, t). (4)

Note that in our units the speed of light is 1.
Let us evaluate the retarded field (2) at a point x such that |x| = R. In the limit R → ∞

we have ni = n + O(R−1), where the unit vector n = x/R defines the particular direction
considered. We also have Ri = R − n · zi (ti) + O(R−1). Therefore, if we call tR the time at
which the field is evaluated at x, using equation (3) and neglecting infinitesimal terms we can
write

ti = t + n · zi (ti), (5)

where t = tR − R. It follows that for R → ∞ equation (2) can be simplified as

Ei (x, tR) = qi

R(1 − n · vi )2

[
−v̇i +

n · v̇i

1 − n · vi

(n − vi )

]
+ O(R−2), (6)

where vi and v̇i are evaluated at the time ti which is implicitly defined by equation (5). It is
convenient for our purposes that in this equation t be considered independent of R. This means
that the retarded time ti is also independent of R, whereas tR = t + R must increase with R for
fixed t.

For the total fields generated by the system of particles we have E = R−1Ē+O(R−2), B =
R−1n × Ē + O(R−2), where

Ē(n, t) =
N∑

i=1

qi

(1 − n · vi )2

[
−v̇i +

n · v̇i

1 − n · vi

(n − vi )

]
(7)

is a quantity independent of R. The power radiated by the system at the time t can be defined
as the flux � of the Poynting vector S = (1/4π)E × B through a sphere � of radius R at the
time tR , in the limit of large R. We have

� = lim
R→∞

R2
∫

d�nS · n =
∫

d�n

4π
[Ē × (n × Ē)] · n =

∫
d�n

4π
(n × Ē)2, (8)

where �n denotes the solid angle associated with the direction n, and integration is carried
out over the total solid angle. Therefore the condition � = 0 is equivalent to the requirement
that the vector n × Ē vanishes for all directions n and times t:

0 = n × Ē = −n ×
N∑

i=1

qi

(1 − n · vi )2

(
v̇i +

n · v̇i

1 − n · vi

vi

)
. (9)

The right-hand side of the above equation can be rewritten in a particularly compact form.
In fact, using (5) we find that the partial derivative of ti with respect to t at fixed n is

∂ti

∂t

∣∣∣∣
n

= 1

1 − vi (ti) · n
. (10)

We then have

∂zi

∂t

∣∣∣∣
n

= vi

1 − vi · n
(11)
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and

∂2zi

∂t2

∣∣∣∣
n

= 1

(1 − n · vi )2

(
v̇i +

n · v̇i

1 − n · vi

vi

)
, (12)

where all quantities with label i are evaluated at the time ti . Hence (9) can be rewritten as

n ×
N∑

i=1

qi

∂2zi

∂t2

∣∣∣∣
n

= 0. (13)

Equation (5) implies that

N∑
i=1

qizi (ti) =
N∑

i=1

qi(ti − t)n + C(n, t), (14)

where C(n, t) is an arbitrary function such that C(n, t) · n = 0. Substituting the above
expression into (13) we then obtain

∂2

∂t2
C(n, t) = 0, (15)

so that

C(n, t) = C0(n) + tC1(n), (16)

where C0(n) and C1(n) are functions defined on the unit sphere |n| = 1, such that
C0(n) · n = C1(n) · n = 0. According to (1), we must have∣∣∣∣∣

N∑
i=1

qizi (ti)

∣∣∣∣∣ < L

N∑
i=1

|qi | (17)

for all t. On the other hand, from (14) and (16) we obtain∣∣∣∣∣
N∑

i=1

qizi (ti)

∣∣∣∣∣ � |C0(n) + tC1(n)|.

Therefore condition (17) can be satisfied for t → ∞ only provided that C1(n) = 0 for all n.
We then conclude that

N∑
i=1

qi[zi (ti) − (ti − t)n] = C0(n), (18)

with C0(n) · n = 0. We can express this result by saying that a bounded motion of a system of
N charges does not radiate electromagnetic energy if and only if the quantity on the left-hand
side of (18), where ti is determined by equation (5) for all i = 1, . . . , N , is independent of t
for all unit vectors n.

By differentiating (18) with respect to t and using (10) we obtain

N∑
i=1

qi

vi (ti) − [n · vi (ti)]n
1 − n · vi (ti)

= 0. (19)

From the above formula it is easy to recover the well-known result that a single charged particle
moving in a bounded region of space necessarily radiates. For N = 1 in fact (19) is equivalent
to v(t) = [n · v(t)]n, which means that v(t) must be parallel to n. Since n can be varied
independently of t, this condition implies v(t) = 0. Hence, the particle must necessarily be
static for all times in order to satisfy the condition of vanishing radiation.
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3. The system of two charges

Let us consider the case N = 2. Condition (19) of vanishing radiation can be written as

V = (n · V)n, (20)

where

V = q1[1 − n · v2(t2)]v1(t1) + q2[1 − n · v1(t1)]v2(t2). (21)

In the above equation the times t1 and t2 are determined by equation (5) for i = 1, 2. Hence
we have

t2 − t1 = [z2(t2) − z1(t1)] · n, (22)

which implies

|t2 − t1| < |z2(t2) − z1(t1)|. (23)

In relativistic language, the above relation means that the two spacetime points (z1, t1) and
(z2, t2), taken on the worldlines of particles 1 and 2 respectively, must have a spacelike
separation. Clearly, for any t1 such that z2(t1) �= z1(t1), there exists a finite interval of values
of t2, including the point t2 = t1, for which (23) is satisfied. Note that, if z1(t) = z2(t) for all
t, then the two particles actually form a single compound particle with charge q1 + q2, so that
the situation is identical to the case of a single charge, which has already been considered at
the end of the preceding section. Therefore, excluding this trivial case, in the following we
shall always assume that z1(t) �= z2(t) for almost all t.

Taking into account the arbitrariness of n and t, we see from (22) that, if one takes any
two times t1 and t2 satisfying (23), then (20) must hold for all unit vectors n forming with
z2(t2) − z1(t1) the angle

θ = arccos
t2 − t1

|z2(t2) − z1(t1)| . (24)

The set of all such unit vectors forms a circle Cθ of radius sin θ on the unit sphere. In order
to satisfy equation (20), V has to be parallel to n for all n ∈ Cθ . However, for any θ �= π/2,
the circle Cθ is not contained in any plane containing the origin of the Cartesian system. This
implies, in particular, that almost all n ∈ Cθ do not lie in the plane containing v1(t1) and v2(t2).
Since V lies instead in this plane for any n ∈ Cθ , we see that equation (20) can be satisfied
only if V = 0. From (21) it then follows that v2(t2) must be parallel to v1(t1). Substituting
v2(t2) = λv1(t1) into the equation V = 0, and solving with respect to λ, we obtain

v2(t2) = − q1v1(t1)

q2 − (q1 + q2)n · v1(t1)
. (25)

Let us initially suppose that q1 + q2 = 0, which means that we are dealing with a neutral
two-particle system (such as a hydrogen atom). Then (25) becomes

v1(t1) = v2(t2) (26)

for all t1 and t2 satisfying (23). This means that, if t is such that z2(t) �= z1(t), then (26)
is satisfied for t1 = t and for all t2 belonging to a finite interval containing t. This implies
in particular that dv2(t2)/dt2 = 0 for t2 = t . In the same way, by interchanging the role of
particles 1 and 2, we also obtain that dv1(t1)/dt1 = 0 for t1 = t . We have thus proved that
v1(t) = v2(t) and v̇1(t) = v̇2(t) = 0 for all t such that z2(t) �= z1(t). From this fact it easily
follows that v1(t) = v2(t) = constant for all t. Since the trajectories of the two particles were
supposed to be bounded in space, we then conclude that

v1(t) = v2(t) = 0 for all t. (27)

5



J. Phys. A: Math. Theor. 41 (2008) 335401 M Marino

Therefore, for two charged particles such that q1 + q2 = 0, the radiated power vanishes at all
times only if the particles are static.

Let us now consider the case q1 + q2 �= 0. If we take any two times t1 and t2 satisfying
(23), we see from (25) and (24) that n ·v1(t1) must be a constant while n varies in the circle Cθ .
This implies that v1(t1) must be directed as z2(t2) − z1(t1). By keeping t2 fixed and varying θ ,
one can actually prove that this fact is true for all t1 belonging to a finite interval of time.
A symmetrical result can also be proved for v2(t2). We thus conclude that the whole motion of
both particles must take place along a straight line. We have therefore reduced the problem to
the study of a one-dimensional motion, and we will henceforth denote as z1 and z2 the (scalar)
coordinates of the two particles. We can rewrite (24) as

[z2(t2) − z1(t1)] cos θ = t2 − t1, (28)

and we have

n · v1(t1) = v1(t1) cos θ = v1(t1)
t2 − t1

z2(t2) − z1(t1)
,

with v1(t1) = dz1/dt1, v2(t2) = dz2/dt2. Therefore from (25) we obtain

[z2(t2) − z1(t1)][q1v1(t1) + q2v2(t2)] − (q1 + q2)(t2 − t1)v1(t1)v2(t2) = 0. (29)

This equation must hold for all t1 and t2 satisfying equation (23). By setting t1 = t2 = t ,
where t is such that z1(t) �= z2(t), we obtain

0 = q1v1(t) + q2v2(t) = d

dt
[q1z1(t) + q2z2(t)],

which means that q1z1(t) + q2z2(t) is a constant. Since q1 + q2 �= 0, by suitably choosing the
origin of the z axis we can always set this constant to 0 and obtain

z2(t) = −q1

q2
z1(t), v2(t) = −q1

q2
v1(t) for all t. (30)

Hence, writing z and v in place of z1 and v1 respectively, equation (29) becomes

[q1z(t2) + q2z(t1)][v(t2) − v(t1)] + (q1 + q2)(t2 − t1)v(t1)v(t2) = 0. (31)

According to (23) and (30), this equality must be true for all t1 and t2 such that

|q2(t2 − t1)| < |q1z(t2) + q2z(t1)|. (32)

Interchanging t1 and t2 in equation (31), we also get

[q1z(t1) + q2z(t2)][v(t2) − v(t1)] + (q1 + q2)(t2 − t1)v(t1)v(t2) = 0 (33)

for

|q2(t2 − t1)| < |q1z(t1) + q2z(t2)|. (34)

For all t1 and t2 such that |t2 − t1| is sufficiently small, both conditions (32) and (34) are
simultaneously satisfied. Therefore, subtracting (33) from (31) we obtain

(q2 − q1)[z(t2) − z(t1)][v(t2) − v(t1)] = 0.

If q1 �= q2, the above equation implies that v(t1) = v(t2) for all t1 and t2 such that z(t1) �= z(t2).
But for such t1 and t2 then (31) implies that v(t1) = v(t2) = 0. On the other hand, for any
regular function z(t), if z(t1) �= z(t2) there must be a time t̄ between t1 and t2, such that
z(t̄) �= z(t1) and v(t̄) = ż(t̄ ) �= 0. We see therefore that the hypothesis z(t1) �= z(t2) leads to a
contradiction. We must thus have z(t1) = z(t2) for all t1 and t2, which means that the particles
are motionless.

6
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Let us finally suppose that q1 = q2. Then (31) becomes

[z(t2) + z(t1)][v(t2) − v(t1)] + 2(t2 − t1)v(t1)v(t2) = 0, (35)

with z(t) = z1(t) = −z2(t), v(t) = v1(t) = −v2(t). Let us divide (35) by t2 − t1 and take the
limit for t2 → t1 = t . We obtain

z̈(t)z(t) + ż2(t) = 0,

or

d2

dt2
z2(t) = 0.

By integrating this equation we get

z(t) =
√

a + bt, (36)

where a and b are two integration constants. It is interesting to observe that this function z(t)

is indeed a solution of equation (35) for all a and b, so that it really describes a nonradiating
motion of two equal charges. If b �= 0, by a suitable shift of the time axis it is always possible
to set a = 0 in (36). Then the equations

z1(t) =
√

bt, z2(t) = −
√

bt (37)

represent a nonradiating motion which is defined for all t such that bt � 0. If we also consider
the conditions |v1(t)| < 1, |v2(t)| < 1, which are imposed by special relativity, we must
require that (1/2)

√|b/t | < 1, or |t | > |b|/4. The motion is thus physically meaningful in the
time interval b/4 < t < +∞ if b > 0, or −∞ < t < b/4 if b < 0. However, in order for
the motion to be bounded we must necessarily have b = 0 in formula (36), so that we again
conclude that the particles must be motionless. This result definitely excludes the possibility
of a nonradiating bounded motion of any pair of arbitrary point charges.

4. Discussion

We have obtained a general condition for the absence of electromagnetic radiation from a
system of moving point charges. This condition, which is expressed by formula (19), seems at
first sight very restrictive, since it must be satisfied for any arbitrary direction n. Using it we
have deduced that two point particles of arbitrary electric charges cannot move for an infinitely
long time within a finite region of space without radiating electromagnetic energy. However,
an analogous result for more than two charged particles is at present not available. We have
shown on the other hand that, if one only considers finite intervals of time (or, conversely, if
one also takes unbounded trajectories into consideration), then nontrivial nonradiating motions
of systems of point charges actually exist: equation (37) provides an example of such a motion
for q1 = q2.

In classical electrodynamics it is possible to remove in a relativistically covariant way
the divergences which are associated with the presence of point charges, and to obtain finite
expressions for the energy and momentum of the complete system of particles and field [16, 17].
The conservation of these ‘renormalized’ quantities imposes on the particles the Lorentz–
Dirac equation of motion. However, the renormalized electromagnetic energy in the presence
of point charges is no longer a positive definite functional of the field configuration [16].
Therefore a spatially confined system of point charges might in principle keep radiating for an
infinitely long time, while the electromagnetic energy contained in a finite volume including
the particles diverges toward −∞. For an isolated system, the electromagnetic field can be
entirely expressed as a function of the dynamical variables of the particles at retarded times.

7
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Hence the divergence of the electromagnetic energy with increasing time must in any case be
associated with an irreversible behavior of the system. It follows that a physically acceptable
description of a stable system, such as an atom in its ground state, requires the existence of
solutions which do not radiate, or which radiate at most a finite amount of energy during their
whole history, starting from a given initial time.

Let us consider a hypothetical confined solution of the Lorentz–Dirac equation for two
interacting particles with charges of equal modulus and opposite sign. Suppose also that this
solution is such that the particles do not fall into each other either at finite or infinite times.
Then the results of the preceding section suggest that, in order for the system to radiate at most
a finite amount of energy, the accelerations of the two particles must tend asymptotically to
zero. However such a motion is obviously not a solution of the Lorentz–Dirac equation, since
the Coulomb attractive force does not asymptotically vanish. We conclude that the description
of the hydrogen atom as an isolated system governed by the laws of classical electromagnetism
is incapable of accounting for the existence of bound noncollapsing states.

It is well known that, if radiation reaction is treated as a small perturbation of the
mechanical trajectories for a charged particle in a Coulomb field, then a particle in a bound
state should spiral toward the center of force and ultimately fall into it. At variance with
the nonrelativistic case, the total energy radiated during such a process appears to be finite
according to relativistic mechanics [18]. The situation becomes however completely different
if one treats the Coulomb problem by making use of the Lorentz–Dirac equation in an exact
way. It has in fact been proved, either in the one-dimensional relativistic case [19] or in the
three-dimensional nonrelativistic case [20], that there exists no solution of the Lorentz–Dirac
equation for which the particle falls into the fixed center of force either at finite or infinite times.
An analogous result, with not rigorous but quite convincing arguments, has also been obtained
in the relativistic three-dimensional case [19]. It has also been shown in [19] that, according
to the relativistic Lorentz–Dirac equation, no collision can occur between two interacting
particles of equal masses and opposite charges moving on a straight line. Let us now make
the plausible hypothesis that these results can be extended to the case of two particles of
different masses moving in three-dimensional space. In other words, let us suppose that for
two particles there exists no collapsing solution at all. Since we have shown that nonradiating
confined solutions of the Lorentz–Dirac equation do not exist, a confined solution should
necessarily radiate an infinite amount of energy for infinite times. Hence the energy in a
finite volume containing the system should diverge to −∞. Although we are unable at the
moment to mathematically prove the impossibility of a noncollapsing solution of this type,
its existence would be quite surprising from a physical point of view. Taking all these facts
into consideration, we are led to make the conjecture that, for the electromagnetic two-body
problem with particles obeying to the Lorentz–Dirac equation, the only possible solutions are
given by unbounded orbits. It is interesting in this respect to recall that, according to a recently
obtained result [21], only unbounded orbits can exist for a particle in a Coulomb field in the
three-dimensional nonrelativistic case.
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